Qiu Jueqin, Xu Haisong

Investigation of impacting factors on camera calibration for spectral sensitivity estimation

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

BACKGROUND

- The camera spectral sensitivity plays an fundamental role in image processing and color reproduction.
- The acquisition of the camera spectral sensitivity is a hot issue.

- Traditional method: measure it with monochromator.
- Algebraic method: estimate it according to image response formation model.

The simplest image response formation model:

$$r^{(k)} = g \int_{\Omega} L(\lambda) S^{(k)}(\lambda) d\lambda$$

Combine three channels and in matrix form:

$$\mathbf{r} = g\Delta\lambda \cdot \mathbf{L} \cdot \mathbf{S}^{\mathrm{T}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

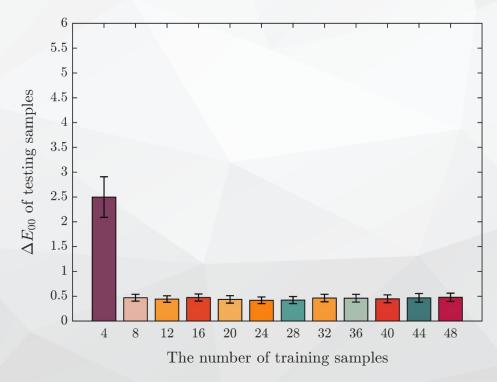
$$N \times 3$$

$$N \times m$$

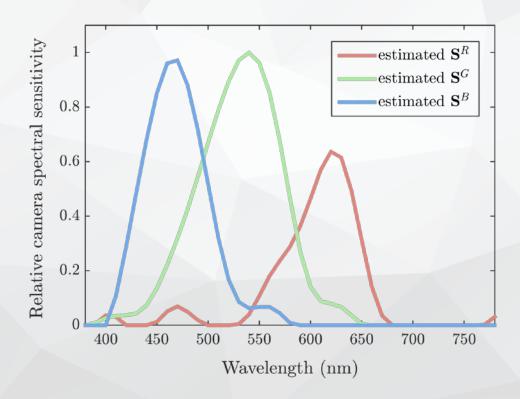
 Goal: find the spectral sensitivity S to minimize the cost function

$$\mathcal{F} = \frac{\sum_{i=1}^{N} \Delta E_{00}(\rho_i, \hat{\rho}_i)}{N} + \max_{i} \{\Delta E_{00}(\rho_i, \hat{\rho}_i)\}$$

 The colorimetric characterization was performed using the root polynomial color correction (RPCC) regression.*


^{*} Finlayson, et al. Color Correction Using Root-Polynomial Regression

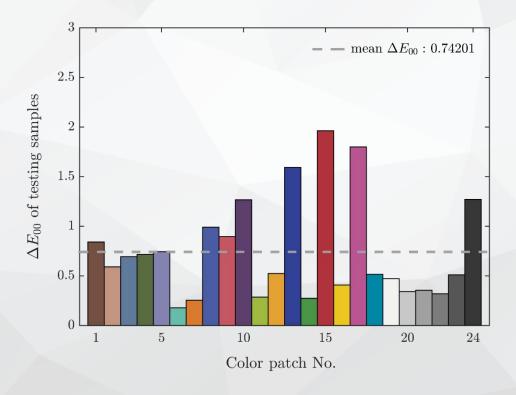
2 | SAMPLE SELETION


- Total 96 color patches in ColorChecker DSG.
- Illuminated by D65.
- Leave-one-out cross-validation (LOOCV).

- 95 patches for training, remaining 1 patch for testing. (not the final training and testing phase)
- Repeat this operation for every patch.
- Rank (the better testing result, the more generalized that spectrum is)

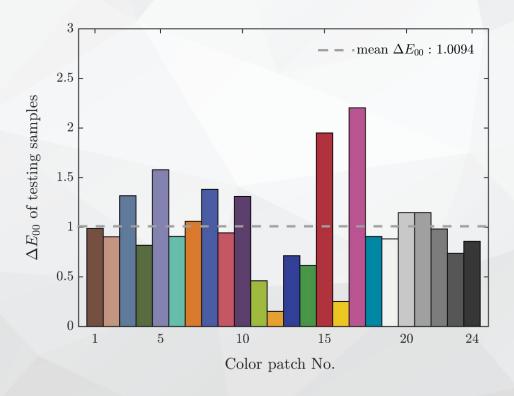
 Using best 4, 8, 12,...,48 patches as training samples, to test the prediction accuracy on the remaining patches:

 The estimated camera spectral sensitivity for D3x, using the optimal 16 training samples under D65:


3 I ILLUMINANT SELECTION

□ Illuminant Selection

- Investigate how the spectral radiances of training samples would influence the performance of the spectral characterization.
- Cross-illuminant validation: a) D65 as training, A as testing; b) A as training, D65 as testing


□ Illuminant Selection

a) Using D65 as training illuminant, A as testing illuminant:

□ Illuminant Selection

• b) Using A as training illuminant, D65 as testing illuminant:

4 | CONCLUSION

□ Conclusion

- The selections of the training color samples as well as the illuminant are the critical factors for a reliable and accurate camera characterization.
- High-fidelity color reproduction could be achieved using less than 10 training samples.
- The SPD of the illuminant should be as flat as possible over the visible spectrum.

Qiu Jueqin, Xu Haisong

Thanks for your attention!